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Abstract 

Mediation analysis, popular in many disciplines that rely on behavioral science data analysis 

techniques, is often conducted using ordinary least squares (OLS) regression analysis methods. 

Given that one of OLS regression’s greatest weaknesses is its susceptibility to estimation bias that 

results from unaccounted-for random measurement error in variables on the right-hand sides of the 

equation, many published mediation analyses certainly contain some and perhaps substantial bias 

in the direct, indirect, and total effects. In this manuscript, we offer errors-in-variables (EIV) 

regression as an easy-to-use alternative to OLS regression when a researcher has reasonable 

estimates of the reliability of the variables in the analysis. In three real-data examples, we show that 

EIV regression-based mediation analysis produces estimates that are largely equivalent to those 

obtained using an alternative, more analytically complex approach that accounts for measurement 

error—single-indicator latent variable structural equation modeling—yet quite different from the 

results generated by standard OLS regression that ignores random measurement error. In a small-

scale simulation, we also establish that EIV regression successfully recovers the parameters of a 

mediation model involving variables adulterated by random measurement error while OLS 

regression generates biased estimates. To facilitate the adoption of EIV regression, we describe an 

implementation in the PROCESS macro for SPSS, SAS, and R that we believe now eliminates most 

any excuse one can conjure for not accounting for random measurement error when conducting a 

mediation analysis. 
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Errors-in-Variables Regression as a Viable Approach to Mediation Analysis with Random Error-

Prone Measurements: Estimation, Effectiveness, and an Easy-to-Use Implementation 

Researchers throughout the world, be they in the behavioral or natural sciences, business 

and management, public health, medicine, and many other fields, are interested in establishing 

through the scientific method those things that produce causal effects of relevance to their theories 

and their discipline and its application. But the goals of research often go beyond merely 

establishing that such effects exist. Researchers also seek to understand the underlying mechanisms 

by which those effects operate. Mediation is the term often employed when discussing the 

mechanisms that transmit causal effects, and researchers regularly theorize about and test 

mediation models using mediation analysis.  

An example of a mediation analysis in action can be found in Grisbook, Dewey, and Cuthbert 

et al. (2024), who estimated a model examining posttraumatic stress and post-partum depression 

as mediators of the effect of emergency Caesarean section relative to spontaneous vaginal delivery 

and planned C-section on internalizing and externalizing behaviors of the child two years after 

birth. They found that women who delivered through emergency C-section, relative to planned C-

section or vaginal birth, reported greater posttraumatic stress and post-partum depression three 

months later, which in turn was related to greater internalizing and externalizing behaviors in the 

child two to three years later. These results suggest that the form of delivery a woman experiences 

during childbirth can affect the child’s behavior years later as a result, at least in part, of the 

psychological experiences and state of the mother that result from different delivery methods.  

Additional examples of mediation analysis are abundant in the research literature (e.g., 

Gaboury, Belleville, & Lebel et al., 2023; Neufeld & Malin, 2022; Rokeach & Wiener, 2022; Smith, 

Andruski, Deng, & Burnham, 2022; Yasuda & Goegen, 2023). Indeed, when browsing any issue of 

journals that publish empirical research, it is common to find at least one mediation analysis in its 

pages (e.g., Chan, Hu, & Mak, 2022; Hayes & Scharkow, 2013; Pieters, 2017). And methodology 
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articles about mediation analysis are among some of the most highly cited papers in the journals 

they are published in and in behavioral sciences methodology as a whole. This reflects the 

widespread popularity and transdisciplinary relevance of mediation analysis. 

Mediation analysis is typically conducted using some kind of linear model-based path 

analysis, such as a set of ordinary least squares (OLS) regression analyses or a simultaneous 

estimation system such as observed variable structural equation modeling (SEM). Well-known 

among methodologists but not everyone who applies the work of methodologists is the deleterious 

effects of random measurement error in the variables being analyzed on the estimation of the 

effects of those variables in linear models (Bollen, 1989; Buonaccorsi, 2010; Cohen, Cohen, West, & 

Aiken, 2003; Darlington & Hayes, 2017; Shear & Zumbo, 2013). Random measurement error is 

ubiquitous in research that behavioral scientists conduct and is difficult to avoid entirely when 

measuring constructs that researchers study. But in practice, random measurement error is often 

ignored by researchers at the analysis phase, and this can produce bias in the estimation of those 

effects and can invalidate inferential tests of the effects that come out of an analysis, including a 

mediation analysis (e.g., Cole & Preacher, 2014). Advice offered by methodologists to counteract the 

effects of random measurement error include minimizing it at the design phase by using good 

measurement instruments, using SEM with a measurement model that captures random 

measurement error, or utilizing various other (and typically complex) methods for correcting bias 

that otherwise results when measurement error is ignored (Buonaccorsi, 2010; Culpepper & 

Aguinis, 2011; Ledgerwood & Shrout, 2011; Pieters, 2017). 

Whether this tendency to neglect the effects of random measurement error reflects 

ignorance, laziness, or a lack of programming skill or familiarity with needed software to account 

for it during the analysis, it seems likely that the practice of ignoring measurement error in 

mediation analysis will continue without some further intervention. In this manuscript, we offer 

such an intervention by discussing and describing the implementation of a simple approach to 
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managing the deleterious effects of measurement error in mediation analysis: errors-in-variables 

(EIV) regression. After a brief review of the mechanics of mediation analysis and the effects of 

random measurement error in estimation and inference, we describe EIV regression as an old, 

largely unused, but promising approach to overcoming the biasing of estimates of effects in a linear 

model that results from ignoring random measurement error. By way of three real-data examples 

and a small-scale simulation, we illustrate the effectiveness of EIV regression relative to ignoring 

measurement error or accounting for it using a more complicated single-indicator latent variable 

modeling approach using SEM. We end with a discussion of implementation of EIV regression in the 

freely-available PROCESS macro for SPSS, SAS, and R that now eliminates most any remaining 

excuses for not accounting for random measurement error when conducting a mediation analysis. 

Mediation Analysis and Random Measurement Error 

Although mediation analysis can take many forms depending on the nature of the variables 

and measurement systems used, the most common is the use of OLS regression analysis or SEM, 

with mediator 𝑀𝑂 and outcome 𝑌𝑂 being continuous observed measurements (and hence the “O” 

superscript, as opposed to the theoretical true scores discussed later) of assumed-to-be continuous 

underlying constructs M and Y. In this scenario, the simplest mediation analysis is typically 

parameterized with a set of two equations, one for 𝑀𝑂 and one for 𝑌𝑂: 

𝑀𝑖
𝑂 = 𝑑𝑀⬚

𝑜 + 𝑎𝑋𝑖
𝑂 + 𝑒𝑀𝑖

𝑜 (1) 

𝑌𝑖
𝑂 = 𝑑𝑌⬚

𝑜 + 𝑐′𝑋𝑖
𝑂 + 𝑏𝑀𝑖

𝑂 + 𝑒𝑌𝑖
𝑜  (2) 

where a, b, and 𝑐′are unstandardized regression weights, 𝑒𝑀⬚
𝑜  are 𝑒𝑌⬚

𝑜  are errors in estimation of 𝑀𝑂 

and 𝑌𝑂, respectively, 𝑑𝑀⬚
𝑜 and 𝑑𝑌⬚

𝑜  are regression constants, and the i subscript denotes case, 

participant or observation i = 1 to n where n is the sample size. 𝑋𝑂 can be a continuous observed 

measurement of construct X, just as 𝑀𝑂 and 𝑌𝑂, or it can be dichotomous numerical codes 
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representing two groups, in the case of two-group experimental manipulation of X for example.1 

Modifications for multicategorical nominal or ordinal 𝑋𝑂 variables are discussed elsewhere (e.g., 

Hayes & Preacher, 2014; Hayes, 2022, pp. 201-230) and beyond the scope of this paper, as is a 

discussion of models of dichotomous, count, or other forms of 𝑀𝑂 or 𝑌𝑂. Covariates can be added to 

the right-hand sides of equations 1 and 2 to deal with confounding of the effects of interest in a 

mediation analysis by shared causal influences on 𝑋𝑂, 𝑀𝑂, and/or 𝑌𝑂. A visual representation of 

this model can be found in Figure 1, panel B. 

 A mediation analysis provides a quantification of three effects of X: the indirect effect, the 

direct effect, and the total effect of 𝑋. Of most relevance to mediation is the indirect effect, 

quantified as the product of a and b from equations 1 and 2. This, product, ab, estimates the 

difference in 𝑌 between two cases that differ by one unit on 𝑋 resulting from the joint effect of 𝑋 on 

𝑀 (estimated with a) which in turn affects 𝑌 (estimated with b). An indirect effect that is different 

from zero by some kind of inferential standard (a bootstrap confidence interval that does not 

contain zero being a popular inferential approach given the typical asymmetry of the sampling 

distribution of the product of two regression coefficients) provides evidence consistent with 

mediation of the effect on 𝑋 on 𝑌 by 𝑀. Of course, mediation, as a causal process, cannot be 

established merely through a statistical analysis or examining the output of a statistical routine. 

Whether an effect can definitively be deemed causal requires strong theoretical argument and 

relevant design as much or even more than it does evidence than an effect, however quantified, is 

different from zero.  

 
1 Our words are carefully chosen here. 𝑋𝑂, 𝑀𝑂, and 𝑌𝑂 are a measures or manipulations of something 
but not necessarily what the researcher claims is being measured or manipulated. This paper is 
about the effects of and accounting for random measurement error, not about validity (i.e., whether 
the researcher is measuring and therefore studying what the researcher intends or claims). 
Whenever we used the term “measurement error,” we are talking about random measurement error. 
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 The direct effect of 𝑋 is estimated with 𝑐′ in equation 2. It quantifies the difference in 𝑌 

between two cases that differ by one unit on 𝑋 but that are equal on 𝑀. It is everything about the 

effect of 𝑋 on 𝑌 that is not carried through 𝑀. As such, it tells us nothing about mediation, as it 

captures the relationship between 𝑋 and 𝑌 not attributable to mediation through 𝑀. The sum of the 

direct and indirect effect of 𝑋 is the total effect of 𝑋, often denoted c. That is, 𝑐 = 𝑐′ + 𝑎𝑏. The total 

effect estimates the average difference in 𝑌 attributable to a one-unit difference in 𝑋. There was a 

time when a mediation analysis would be undertaken only with affirmative evidence of an 

association between 𝑋 and 𝑌 captured by c or a related statistic. But nowadays, it is understood that 

only ab (which is equivalent to 𝑐 − 𝑐′ in single-mediator models estimated using regression 

analysis) is pertinent to mediation and this indirect effect can be different from zero even if c is not 

(see e.g., Hayes, 2009; Kenny & Judd, 2014; Shrout & Bolger, 2002; O’Rourke & MacKinnon, 2018). 

Thus, c and inference about it tells us nothing about mediation or whether 𝑋 may be indirectly 

influencing 𝑌 through 𝑀. 

This is typical practice in mediation analysis. But often, if not usually, researchers are more 

interested in the direct, indirect, and total effects of 𝑋 estimated not from equations 1 and 2 but 

instead from 

𝑀𝑖
∗ = 𝑑𝑀⬚

∗ + 𝑎∗𝑋𝑖
∗ + 𝑒𝑀𝑖

∗ (3) 

𝑌𝑖
∗ = 𝑑𝑌⬚

∗ + 𝑐′∗𝑋𝑖
∗ + 𝑏∗𝑀𝑖

∗ + 𝑒𝑌𝑖
∗ (4) 

as diagrammed in Figure 1 panel A, where 𝑋∗, 𝑀∗ , and 𝑌∗ , are the are the underlying true scores of 

constructs X, M, and Y that the researcher is measuring. In this model, the direct, indirect, and total 

effects of X on Y are estimated as 𝑐′∗, 𝑎∗𝑏∗, and 𝑐∗ =  𝑐′∗ + 𝑎∗𝑏∗, respectively.  

The distinction between true and observed scores is abstract but important and one with 

which most researchers are at least vaguely familiar. Recalling the example mediation analysis 

described at the beginning of this paper, Grisbook et al. (2024) used the Edinburgh Postnatal 

Depression Scale (EPDS) and the Psychiatric Diagnostic Screening Questionnaire (PDSQ) to 
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measure postnatal depression and post traumatic stress. These self report measurement 

instruments generate observed scores that can be used in estimation of equations 1 and 2. But 

Grisbook et al. (2024) were interested in the effects of emergency C-section on child behavior 

through depression and posttraumatic stress, not through scores on the EPDS and the PDSQ. That is, 

they were interested in the effects estimated with equations 3 and 4, not equations 1 and 2. 

The true scores are unobserved or “latent” and not directly quantified or available in the 

data, so equations 3 and 4 can’t be directly estimated. Under classical test theory, a measurement 

theory motivating many measurement procedures in the behavioral sciences (see e.g., Nunnally, 

1978), the observed scores are conceptualized as caused by the true scores (represented with the 

dashed arrows in Figure 1) but are not equivalent because the observed scores are a function of 

both the true scores and, typically, some random measurement error: 

𝑋𝑖
𝑂 = 𝑋𝑖

∗ + 𝜀𝑋𝑖
  

𝑀𝑖
𝑂 = 𝑀𝑖

∗ + 𝜀𝑀𝑖
  

𝑌𝑖
𝑂 = 𝑌𝑖

∗ + 𝜀𝑌𝑖
  

where 𝜀𝑋𝑖
, 𝜀𝑀𝑖

, and 𝜀𝑌𝑖
 are the random measurement errors for case i. These random errors in 

measurement can come from various sources that depend on the specifics of the measurement 

procedure or instruments being used, will vary between people, and can even vary in direction or 

magnitude over time and so can depend on when a person is measured. The point is that on any 

measurement occasion, the set of observed scores available in the data will not be the same as the 

true scores. 

The amount of random measurement error that exists in a set of observed scores is the 

reliability of the observed scores, defined theoretically as the ratio of true score to observed score 

variance, the latter being the sum of the true score and random error variance under the 

assumption of classical test theory that errors are uncorrelated with true scores. For example, in the 

case of 𝑀𝑂: 
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𝜌(𝑀𝑂)  = 𝑉(𝑀∗) /𝑉(𝑀𝑂) = 𝑉(𝑀∗) /[𝑉(𝑀∗) + 𝑉(𝜀𝑀)] (5) 

where V denotes variance and 𝜌(𝑀𝑂) is the reliability of 𝑀𝑂 (reliability of 𝑋𝑂 and 𝑌𝑂 are defined 

similarly). Reliability is the proportion of the variance in observed scores that is the result of 

variance in the true scores and so is between 0 and 1, with 0 reflecting observed measurements that 

are all random measurement error and 1 meaning an absence of random measurement error. Even 

though the true scores and therefore the variance of the true scores and random measurement 

error cannot be known, psychometric theory produces a variety of means of estimating the 

reliability of the observed scores, including Cronbach’s , McDonald’s , the correlation between 

observed measurements over time (test-retest reliability), and others. 

When there is no random measurement error in the observed measurements, meaning 

reliability of all observed variables is 1, then 𝑋𝑖
𝑂 = 𝑋𝑖

∗ , 𝑀𝑖
𝑂 = 𝑀𝑖

∗, 𝑌𝑖
𝑂 = 𝑌𝑖

∗, and equations 1 and 3 

and equations 2 and 4 are functionally equivalent. In other words, in the case of equivalence 

between the observed and true scores, 𝑐′ = 𝑐′∗, 𝑎𝑏 = 𝑎∗𝑏∗, and 𝑐 = 𝑐′∗ + 𝑎∗𝑏∗ and so all is well 

when equations 1 and 2 are used to estimate the effects of interest in a mediation analysis.  

 But theory and research has shown that, typically, all is not well in a mediation analysis 

when observed X and/or M contain random measurement error. Such fallible measurement is quite 

common in research, but ignoring it when conducting a mediation analysis using equations 1 and 2 

means that one or more of the effects, 𝑐′, 𝑎𝑏 and 𝑐 are likely to diverge from 𝑐′∗, 𝑎∗𝑏∗, and 𝑐∗, with 

the extent of the divergence dependent on how much random measurement error exists in 𝑋𝑂 

and/or 𝑀𝑂, i.e., how far 𝜌(𝑋𝑂) and/or 𝜌(𝑀𝑂) deviate from 1. That is, the result of using such fallible 

measurements and estimating equations 1 and 2 will be inaccurate estimates of one or more of the 

effects of interest, 𝑐′∗, 𝑎∗𝑏∗, and/or 𝑐∗, and inferential tests for those effects from computations 

based on equations 1 and 2 that are likely to be invalid. For a discussion and evidence, see Cheung 

and Lau (2008); Cole and Preacher (2014); Fritz, Kenny, and MacKinnon (2016); Gonzales and 

MacKinnon (2021); Valeri, Lin, and VanderWeele (2014); VanderWeele, Valeri, and Ogburn (2012). 



EIV Regression 
10 

 
Note that ignoring measurement error is not a death sentence for accuracy of estimation 

and test validity. If 𝑌𝑂 contains random measurement error but 𝑋𝑂 and 𝑀𝑂 are perfectly reliable, 

the unstandardized effects (the effects we are focusing on in this paper) estimated by equations 1 

and 2 will be estimating the same thing that 𝑐′∗, 𝑎∗𝑏∗, and 𝑐∗ in equations 3 and 4 do. 2 However, 

sampling variance of these effects will be larger, meaning power to detect the direct, indirect, and 

total effects will be reduced and confidence intervals will be wider than they would be if 𝑌𝑂 were 

free of random measurement error. 

Approaches to Managing the Effects of Measurement Error 

 Though we have no data to support this claim, we believe anyone who is familiar with the 

empirical research in their area would agree that the typical practice for mitigating the effects of 

random measurement error in a mediation analysis is to do nothing. It is apparent from the use of 

popular tools that simplify a mediation analysis such as the PROCESS macro for SPSS, SAS, and R 

(Hayes, 2022) and its precursors (Preacher & Hayes, 2004, 2008), the mediation package in R 

(Tingley, Yamamoto, Hiros, Imai, & Keele, 2014), PROC CAUSALMED in SAS, and other 

computational aids that historically or currently have no means of incorporating measurement 

error into the estimation that most published mediation analyses contain some and perhaps 

substantial bias as a result, along with the corresponding effects of such bias on the accuracy and 

validity of inference (c.f., Cole & Preacher, 2014).  

That said, this strategy, if it can be called that, is not always quite as problematic as it might 

seem. As mentioned earlier, random measurement error in 𝑌𝑂 does not by itself bias the estimation 

of effects when using equations 1 and 2, and when X is experimentally manipulated or codes groups 

on well-defined attributes, the investigators usually at some point knows with certainty which 

 
2 This is true for unstandardized effects. Accuracy in estimation of standardized effects will be 
influenced by random measurement error in 𝑌𝑂 as well. A discussion of the effects of measurement 
error on standardized paths and effects in a mediation analysis is beyond the scope of this paper. 
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condition a participant was assigned to or which category a person is a member of, meaning the 

reliability of 𝑋𝑂 can be assumed to be one.3 That leaves measurement error in 𝑀𝑂 (as well as any 

covariates) as the remaining source of measurement error-induced bias in estimation. If the 

investigator is careful to minimize random measurement error in 𝑀𝑂 (and covariates), the bias is 

likely to be smaller, though not zero, than it otherwise would be when 𝑋𝑂 is not the same as 𝑋∗. 

Latent Variable SEM 

 If an attempt is made to acknowledge random measurement error when conducting a 

mediation analysis, most often the investigator will choose SEM. Using an SEM program for 

estimation does not in of itself necessarily do anything to address the problem if the model being 

estimated is just a path analysis linking observed variables that contain random measurement error 

together in a structural model. Rather, the model must include some kind of measurement model 

component in addition to the structural component that keeps the random measurement error out 

of the mathematics that generates the structural path coefficients between latent variables (the 

SEM-equivalent of the “true scores.”). This can be done using either a multiple indicator latent 

variable (MILV) approach or a single-indicator latent variable (SILV) approach.  

 The MILV approach can be used when one or more of the variables X, M, and/or Y in a 

mediation model is measured with two or more indicators of the underlying latent variable. 

Indicators might be, for example, the individual questions on a self-report measure that a person is 

asked to respond to during the measurement procedure. Measurements of these indicators are 

observed and therefore available in the data and specified as causally influenced by the latent 

variable, which is unobserved and so not in the data. The quantification of the effect of the latent 

variable on an indicator is the indicator’s factor loading. The model of each indicator also includes 

an error in estimation whose variance is estimated and that captures both random measurement 

 
3 An exception would be when an investigator creates a categorical variable by artificially categorizing a 
continuous variable. In this case, the reliability of the categorical variable will be less than one (MacCallum, 
Zhang, Preacher, and Rucker, 2002) 
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error and error in the estimation of the indicator variable from the latent variable (as rarely would 

an indicator be perfectly predictable from the latent variable causally influencing it). These linkages 

between latent variables and their indicators constitute the measurement component of the model. 

The structural component of the model is the paths, assumed to be causal in a mediation model, 

that connect the latent variables together in a causal system, just as in an observed variable model. 

This procedure keeps the random measurement error on the measurement side of the model and 

will produce more accurate estimates of the effects of the latent variables in the mediation analysis. 

Examples of the MILV approach in action in a mediation analysis can be found in Fye, Kim, and 

Rainey (2022) and Wang, Sang, Li, and Zhao (2016). Mediation analysis using the MILV approach is 

discussed in more detail by Cheung and Lau (2008), Falk and Biesanz (2015), Lau and Cheung 

(2012), and MacKinnon (2008). Bollen (1989) and Kline (2023) discuss the theory and practice of 

SEM and latent variable modeling. 

  When using the MILV approach, no information is required about the reliability of an 

observed variable. By contrast, the SILV approach involves the estimation of the effects in a 

structural model just as in the MILV approach, but the measurement component of the model is 

simpler, with the observed variables X, M, and/or Y being the sole indicators of their corresponding 

latent variables, as in Figure 2. As the measurement model for each variable won’t be identified 

when there is only one indicator, constraints must be imposed that both identify the measurement 

side of the model and specify the reliability of the single-item indicators of the latent variables, i.e., 

the reliability of the observed variables. This is accomplished by fixing the effect of the latent 

variable on the observed variable to 1 and the variance of the random error in the observed variable 

to the variance of the observed variable multiplied by 1 minus an estimate of the reliability of the 

observed variable. Thus, unlike the MILV approach, the SILV approach requires an external estimate 

of the reliability of the observed variables. The important point is that whether using the SILV or 

MILV approaches, the variance-covariance matrix for the latent variables used in the estimation of 
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the structural paths in the mediation model is less contaminated by measurement error than it 

otherwise would have been if the reliability of the observed variables were assumed to be one and 

the model estimated as an observed variable SEM or using separate OLS regression equations.  

Errors-in-Variables Regression 

An alternative and arguably simpler approach to accounting for the effects of measurement 

error, EIV regression is often attributed to Fuller (e.g., Fuller, 1987) and has origins in the 

economics literature. This approach is both elegant and not terribly difficult to implement (see 

Appendix A for the EIV computations we use throughout this manuscript). The premise is that 

regression coefficients are derived from the variance-covariance matrix of the variables in the 

model, but the variance-covariance matrix of observed scores is contaminated by measurement 

error. Under the assumptions of classical test theory that the random measurement errors and true 

scores are uncorrelated and the random errors are uncorrelated with each other, the covariance 

between observed scores is equal to the covariance between the true scores. Thus, the covariances 

are fine as is even with random measurement error in the observed scores. But the variances of the 

observed scores contain a component attributable to random measurement error.  

EIV regression involves a modification of the variances of variables on the right-hand sides 

of the equations defining a model that removes the variance of the observed scores attributable to 

random measurement error. Under the laws of classical test theory, the variance of the random 

measurement errors for the mediator is, from equation (5), 

𝑉(𝜀𝑀) = [1 − 𝜌(𝑀𝑂)] 𝑉(𝑀𝑂) (6a) 

Using a similar logic for X, 

𝑉(𝜀𝑋) = [1 − 𝜌(𝑋𝑂)] 𝑉(𝑋𝑂) (6b) 

and so the variance of the mediator and X true scores are, respectively, 

𝑉(𝑀∗) = 𝑉(𝑀𝑂) − [1 − 𝜌(𝑀𝑂)] 𝑉(𝑀𝑂) (7a) 
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𝑉(𝑋∗) = 𝑉(𝑋𝑂) − [1 − 𝜌(𝑋𝑂)] 𝑉(𝑋𝑂) (7b) 

With information about the reliability and variance of the observed scores for X, M, and covariates if 

used, the variance of the true scores can be calculated. Reliability estimates are not difficult to 

generate using methods discussed in the psychometrics literature, taught in many methodology 

classes researchers take in graduate school and elsewhere, and are programmed into most good 

statistics packages, and of course the variance of the observed scores is known. Since the input to 

the regression routine is the variance-covariance matrix of the variables in the model, EIV 

regression works with a version of the variance-covariance matrix whose diagonal elements for the 

variances of the variables on the right-hand side of the equation are produced by subtracting from 

the observed variances the part of the variance in the observed scores due to random measurement 

error, as in equations 7a and 7b (and likewise for covariates if used). 

So long as the estimate of reliability of the observed scores is reasonably accurate, in effect 

this modification produces a data matrix that corresponds more closely to the data one would have 

if the true scores rather than the observed scores had been quantified. The new data matrix is then 

used with standard OLS regression algebra to produce estimates of the effects of variables in the 

model that are likely to be closer to their “true” or correct values had the true scores been observed 

instead of the error-contaminated observed scores. Because of the modification to the data, 

standard errors for the resulting regression coefficients must be adjusted to account for this 

modification (see Appendix A). Note that in EIV regression, random measurement error in the 

variable on the left-hand side of a model equation is not removed from the data, as random 

measurement error in that variable when serving as outcome does not bias the estimation of 

regression coefficients. 

Methodologists have examined the utility of EIV regression when analyzing social science 

data. For example, Culpepper and Aguinis (2011) found that EIV regression produced more 

accurate estimates of mean differences while maintaining Type I error control compared to OLS 
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regression and a few alternative approaches to random measurement error correction in the two-

group analysis of covariance when the covariate contains random measurement error. And 

Culpepper (2012) provides evidence of the superior performance of EIV regression compared to 

OLS regression and the SILV approach for testing interaction between two variables when one is 

dichotomous. Counsell and Cribbie (2017) also found good performance of EIV regression relative 

to change scores or analysis of covariance in two-group comparisons of change over time, but they 

were less optimistic about is use in some circumstances such as when the sample size was small or 

the assumed reliability of the variable over time was different than the actual test-retest reliability.  

Some exceptions aside, EIV appears to have promise as a straightforward solution to the 

problems in estimation of effects in linear models that result when measurement error is ignored. 

But the impact of this work on the practice of data analysis, mediation analysis in particular, has 

thus far been limited as evidenced by the lack of use of EIV regression in the behavioral science 

literature. Two explanations for this seem probable. First, EIV regression likely remains largely 

unknown to most researchers, as is not implemented in most data analysis software behavioral 

scientists prefer to use (the exception being Stata) nor is it discussed much if at all in popular books 

often used in regression and linear modeling classes. Second, the work to date on EIV regression has 

not been undertaken with mediation analysis in mind and so perhaps has not attracted the 

attention of those who otherwise have taken great interest in elucidating mechanisms that underly 

causal effects through mediation analysis. 

In the rest of this manuscript, we explore and discuss the potential contribution of EIV 

regression as an approach to managing the effects of random measurement error in mediation 

analysis. We first do a set of example mediation analyses, analyzing real data sets using OLS 

regression analyses of observed variables as well as using EIV regression. We do the same analyses 

using the SILV approach to compare the results it yields relative to OLS and EIV regression. We then 

describe a simulation that addresses better than our examples whether EIV reduces or eliminates 
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the bias observed when random measurement error is not accounted for using OLS regression. We 

end with a discussion of an implementation of EIV regression in the PROCESS macro for SPSS, SAS, 

and R, acknowledging some potential limitations and caveats of using EIV regression. 

Example Mediation Analyses Using Real Data 

In this section, we provide three example mediation analyses using real data sets from 

published studies, each of which contained a mediation analysis. We analyzed the data the 

investigators made publicly available using three approaches, thereby allowing a comparison of 

point estimates and inferences they yield: OLS regression which does not account for random 

measurement error, EIV regression accounting for random measurement error in variables on the 

right side of equations, and the SILV modeling approach. Code used to conduct each analysis can be 

found in Appendix B. 

Example 1: Compassion Fatigue and Compassion Mindset 

The first example is based on data taken from Gainsburg and Cunningham (2023). The data 

include responses from 308 adults in the United States who completed a task designed to elicit 

compassion fatigue by showing them photos of people experiencing distressing situations. 

Participants were asked about their beliefs about compassion as a limited resource, expected 

compassion fatigue from the task, and resulting compassion fatigue. The mediation model specifies 

that beliefs about whether compassion is a limited resource (compassion mindset: X) as the cause 

of compassion fatigue elicited from the task (experienced compassion fatigue: Y), operating 

indirectly through their anticipated compassion fatigue from the task (expected compassion fatigue: 

M). Participants’ expectations about how fatiguing the task will be were theoretically caused by 

their beliefs about compassion as a limited resource, which in turn would increase their experience 

of compassion fatigue. Measures of all three variables were constructed as unweighted averages of 

responses to multiple indicators of each construct in measured using a Likert response format. The 

reliabilities of each construct provided by the investigators and using Cronbach’s α were 0.73 for 
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compassion mindset (four indicators), 0.86 for expected compassion fatigue (eight indicators), and 

0.84 for experienced compassion fatigue (eight indicators).  

A mediation analysis was conducted first using ordinary least squares regression models of 

expected compassion fatigue (M: Equation 1) and experienced compassion fatigue (Y: Equation 2), 

which ignores random measurement error in all three variables. The analysis was conducted using 

PROCESS (Hayes, 2022) with inference for the indirect effect conducted using a percentile 

bootstrap confidence interval based on 5,000 bootstrap samples. Other tools capable of conducting 

a mediation analysis could be used, such as structural equation modelling of observed variables 

using maximum likelihood estimation. SEM models would produce similar estimates (Hayes, 

Montoya, & Rockwood, 2017), with slight differences in standard errors resulting from the use of 

maximum likelihood.  

We next used EIV regression as implemented in the PROCESS macro as of Version 5 that is 

described in more detail later. The code to estimate the model can be found in Appendix B and the 

mathematical details of the implementation can be found in Appendix A. EIV regression accounts 

for random measurement error on the right-hand sides of each equation but not the left-hand side. 

In the model predicting expected compassion fatigue (M), random measurement error was 

accounted for compassion mindset (X) during model estimation through modification of the data 

matrix to account for random measurement error in X but not in M. In the model predicting 

experienced compassion fatigue (Y), the model was estimated using a modified data matrix 

accounting for random measurement error in compassion mindset (X) and expected compassion 

fatigue (M). Inference for the indirect effect was conducted using percentile bootstrap confidence 

intervals based on 5,000 bootstrap samples.  

The model was then estimated using the SILV modeling approach as diagrammed in Figure 

2 and using the lavaan package version 0.6-18 in R (code is provided in Appendix B, with 

accompanying code for the same analysis in Mplus and Stata available in supplementary materials 
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available upon request). The unweighted average of indicators for each variable served as the sole 

indicator of their respective latent variables, with the factor loading constrained to one and the 

error in the estimation of the indicator variables constrained to the observed variance multiplied by 

one minus the reliability estimate. The mediation model was then estimated replacing the observed 

variables with corresponding latent variables using maximum likelihood estimation of model 

parameters, and inference about the indirect effect estimated using a percentile bootstrap 

confidence interval based on 5,000 bootstrap samples.  

The results of these three analyses are shown in Table 1. Notice first that the OLS estimates 

of each path and the indirect effect differ from those generated by the EIV and SILV approaches, 

with the OLS estimates attenuated (i.e., closer to zero) relative to those generated with the EIV and 

SILV approaches. This attenuation of effects is consistent with previous literature on the effects of 

measurement error on the estimates of effects in linear models. But as discussed in Cole and 

Preacher (2014), the consequences of unaccounted-for unreliability can be either the under or 

overestimation of effects depending on the complexity of the model, which variables are measured 

imperfectly, and how unreliable those measurements are (as our second example will illustrate). 

Second, notice in Table 1 that the point estimates of the effects using EIV regression and the 

SILV approach are largely the same. In this example, it appears to make little difference which of the 

two methods is used. The point estimates are not affected by the choice. We would expect that the 

standard errors would be smaller using the SILV approach, as it accounts for random measurement 

error in variables on the left sides of the equations. However, we don’t see a pattern consistent with 

this expectation. Perhaps the sample size is large enough in this example to eliminate any of the 

precision of estimation advantages that would come with accounting for measurement error in the 

outcome. 

Finally, observe that substantively, and thinking only dichotomously in terms of whether an 

effect can be said to be zero or not, the results are very similar between the three approaches. All 
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three yield 95% confidence intervals for the indirect effect that are positive and exclude zero, and 

both result in total and direct effects that are not statistically different from zero by a null 

hypothesis test or confidence interval.  

Example 2: Nature and Self-Actualization 

The second example is based on data from Yang et al. (2024, Study 4), who investigated the 

effect of exposure to nature on authenticity, defined as a sense of humanistic self-actualization with 

behaviors congruent with the self. One hundred seventy one participants were randomly assigned 

to view either pictures of nature (X = 1) or pictures of urban environments (X = 0), then answered 

questions about their resulting mood (positive affect: M) and sense of authenticity (authenticity = 

Y). It was hypothesized that participants in the nature condition relative to those in the urban 

condition would have a greater sense of authenticity (12 indicators averaged to produce a 

composite measure, Cronbach’s α = 0.82) indirectly through an enhancement of positive mood (18 

indicators averaged, Cronbach’s α = 0.91), which would intern prompt greater authenticity.  

The mediation analyses were conducted just as described in the first example 

(accompanying code is shown in Appendix B), with results from the three analytical approaches 

shown in Table 2. Models predicting M are largely identical across approaches, since the 

experimental manipulation contains no random measurement error and measurement error in the 

variable on the left-hand side of the equation (M) does not bias the estimate of X’s effect. The 

differences between approaches become apparent when looking at the estimates in the equation for 

Y. Like the previous example, the OLS estimate of the effect of the mediator on Y is attenuated 

relative to the EIV and SILV estimates, but the direct effect of X is closer to zero in the EIV and SILV 

models compared to the OLS model. Given that the effect of X on M and the total effect of X on Y is 

same across approaches (a requirement of an X without measurement error), the attenuation of the 

effect of M on Y in OLS means that the direct effect of X would have to increase to offset the resulting 

decrease in the indirect effect relative to the EIV and SILV approaches. While all three approaches 
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produce statistically significant indirect effects and non-significant direct effects, the magnitude of 

the indirect effect is larger and direct effect is subsequently smaller in EIV and SILV models. And like 

in the first example, the EIV and SILV approaches produce largely identical estimates of the effects 

and only trivially different standard errors, but the estimates are different from those produced by 

OLS regression. 

Example 3: Photo-Editing and Self-Perceived Attractiveness 

The final example is based on data taken from Ozimek et al. (2023). The data includes 

responses from 316 adults who actively use social media about their photo editing behavior and 

self-perceptions. Photo editing (X) was measured using the unweighted average of five indicators 

measuring the participant’s tendency to edit and use filters on pictures of themselves for social 

media, with higher scores representing more photo editing behavior (Cronbach’s α = 0.75). 

Participants were also asked about their self-objectification (M), a 14-item measure quantifying the 

degree to which participants view themselves and their own self-worth through their attractiveness 

as perceived through the eyes of others (Cronbach’s α = 0.89). Participants were also asked to rate 

their self-perceived attractiveness (Y) using six indicators assessing their general satisfaction with 

their appearance (Cronbach’s α = 0.94). They proposed that higher photo editing behaviors 

contribute to lower self-perceived attractiveness indirectly through increases in self-objectifying 

which would in turn lower self-perceived attractiveness.  

The mediation analyses were conducted as in the previous two examples, and the results of 

are shown in Table 3. In line with the previous two examples, EIV and SILV approaches produce 

similar estimates of regression coefficients, total, direct and indirect effects. And as in the first 

example also based on an imperfectly measured X and M, OLS estimates are attenuated relative to 

the other two approaches, but statistical inference yields the same conclusions about which effects 

are different from zero and which are not. 
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The Effectiveness of EIV Regression: Simulation Evidence 

Our example analyses presented in the prior section show that EIV regression produces 

estimates of the effects in a mediation model that correspond closely to the estimates obtained from 

the SEM-based SILV approach, both of which diverge from estimates generated by OLS regression. 

But two people can agree the earth is flat while both being wrong. Who is to say that the EIV and 

SILV approaches generate more accurate estimates and inferences? Without some objective truth 

against which these results can be evaluated, the fact that EIV results correspond to the SILV model 

results doesn’t mean the EIV results are more trustworthy. Perhaps they are both wrong in the same 

manner and the OLS results better estimates of reality. To answer this question, we conducted a 

small-scale simulation in which we defined truth to determine whether the EIV approach that 

accounts for random measurement generates more accurate estimates of the effects in a mediation 

model than does OLS regression that ignores that random measurement error. 

We assume that researchers who ignore random measurement error by conducting a 

mediation analysis using OLS regression are comfortable treating their point estimates of effects 

and the fit of their models (using R2) as estimates of corresponding parameters in the population 

from which they have sampled or the true data generating mechanism. Although we have reason to 

doubt that the OLS estimates are good ones, we designed the simulation giving the benefit of the 

doubt to the OLS regression results we report in Tables 1-3. We treated the OLS point estimates of 

all the paths in those models and the resulting direct, indirect, and total effects as population values 

or “parameters” of the population or data generating mechanism. Furthermore, we treated the 

squared multiple correlations as population values of variance explained in M and Y by each 

equation. We used these parameters in our simulations, creating data sets of sizes n = 50, 100, 200, 

300, 500, and 1000 that represent random samples from population mediation models defined by 

the OLS regression estimates in Tables 1-3. For the simulation corresponding to examples 1 and 3 

with continuous X, the data generation started with a set of random standard normal deviates for X, 
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whereas for example 2, X was a dichotomous variable coded 0 and 1 for the two groups with the 

sample split equally between the two groups. The errors in estimation in the models of M and Y 

were random normal deviates with variance set to the value required to produce the corresponding 

squared multiple correlation (within expected sampling error) for each model equation. 

This first stage of data generation just described produced a trivariate sample from the 

population with X, M, and Y containing no random measurement error, i.e., representing true scores 

on the latent variables, with relationships between them defined by the population mediation 

model. Next, we added random normal measurement error onto X (except in the simulation with a 

dichotomous X), M, and Y such that the resulting observed scores had reliabilities equal to (within 

expected random sampling error) the reliabilities reported in our example analyses. Using the 

resulting trivariate sample, now adulterated by random measurement error, we estimated the 

direct, indirect, and total effects of X using OLS regression and EIV regression, specifying the same 

reliabilities in the EIV regression routine that were used to generate the observed data. This 

procedure was repeated for a total of 5,000 times for each sample size, recording each of the 

estimated effects in each repetition as well as whether a 95% confidence interval for the effect 

included the known population value. As the sampling distribution of an indirect effect is not 

normal in form, confidence intervals for the indirect effect were generated using the percentile 

bootstrap method based on 5,000 bootstrap samples, whereas confidence intervals for the direct 

and total effects were generated in the usual way, assuming the sampling distribution is roughly 

normal in form, as the point estimate plus or minus approximately 2 standard errors (the 

appropriate critical value from the t distribution was used rather than 2, with degrees of freedom 

equal to the residual degrees of freedom for the regression equation). We repeated this entire 

simulation for a total of 18 times, each time using one of the sets of population parameters defined 

by the models reported in Tables 1, 2, and 3 and for 6 sample sizes. All simulations were 

programmed in R and using the OLS and EIV regression routines built into the PROCESS macro 



EIV Regression 
23 

 
described later as the computational engine for estimation of the model coefficients and calculating 

inferential statistics. The PROCESS implementation of EIV regression is documented in Appendix A. 

The results are found in Tables 4 and 5 for each population and sample size combination. 

Table 4 provides mean estimate of each effect over the 5,000 replications, as well as the mean bias 

percentage, defined as Bias% = (Mean Estimate – Parameter) / Parameter. The value of the 

parameter of each effect is found in each of the subheadings. A negative value for Bias% reflects 

attenuation of the effect toward zero, whereas a positive value reflects an overestimate (i.e., bias 

away from zero). Table 5 provides 95% confidence interval coverage, meaning the percentage of 

times over the 5,000 replications that the confidence interval for that effect included the parameter 

being estimated. Good performance is reflected in a mean estimate of the effect close to the 

corresponding parameter (i.e., Bias% near zero) and confidence interval coverage near 95%.  

Given that we have simulated only three populations varying unsystematically in the sizes of 

the effects being estimated and the reliabilities of the observed variables, we are cautious to not 

overanalyze and overinterpret these results. But there are a few patterns that jump right off the 

page and are noteworthy. First, notice in Table 4 that OLS generally gets the effects wrong, and 

sometimes substantially so, as reflected by the difference between the population effects and the 

mean estimates of those effects over the 5,000 replications. And observe that increasing the sample 

size has little to no effect on the bias in OLS estimates. You can’t make the problem produced by 

unaccounted-for random measurement error go away or even diminish by just collecting more data. 

But EIV regression generally gets it right regardless of sample size, with very little discrepancy 

between mean estimates and the population values of the effects. 

Second, turning to Table 5, notice that confidence interval coverage using EIV is generally 

right on the money, with about 95% of 95% confidence intervals containing the parameter, plus or 

minus a few percent here and there. Not so for OLS regression-based confidence intervals, but with 

a caveat discussed later. Notice that in a few of our example populations, OLS confidence interval 



EIV Regression 
24 

 
coverage for the indirect effect is below 95% even in small samples, and the larger the sample, the 

worse things get. This is the result of the bias observed in Table 4. As the sample size increases, the 

confidence interval becomes increasingly narrow, converging around the wrong estimate and 

increasingly excluding the parameter. In smaller samples, the bias is likely offset by the larger 

confidence interval width such that the interval is more likely to capture the parameter even though 

the interval is centered around a biased estimate. 

Earlier we mentioned that random measurement error is not a death sentence for accurate 

estimation and inference. The second simulation based on the nature and self-actualization study 

makes this point. In this simulation, X is dichotomous and contains no random measurement error 

and M, though not free of measurement error, is measured with fairly high reliability (0.91). 

Measurement error in M but not X, regardless of the extent of measurement error in Y, will tend to 

bias the estimation of the effect of M on Y and therefore the indirect effect of X while also 

influencing to some extent the accuracy in the estimation of the direct effect of X. This is what we 

see in the second simulation. But it would not bias the estimation of the total effect, as seen in Table 

2. For this to happen, the biases in the estimation of the direct and indirect effects would have to be 

similar in magnitude but opposite in direction given that the total effect is the sum of the direct and 

indirect effects. This is also what we see in Table 4. But given the high reliability of M in this 

example, the bias in estimation of the direct and indirect effects is small, and confidence coverage is 

still respectable even in moderate to large samples.  

In summary, the evidence from this limited simulation is consistent with the conclusion that 

OLS estimation is the flat-earther here and that EIV regression (and, by logical extension given the 

example analyses presented in the prior section, the SILV approach) correctly sees the world as 

round. This conclusion agrees with research and analytical derivations in other modeling contexts 

that random measurement error in variables on the right-hand side of linear models can wreak 

havoc on accurate estimation of the effects the researcher is trying to quantify and test. 
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An Easy-to-Use Implementation of Errors-in-Variables Regression 

Fortunately, EIV regression is not some obscure computational technique that one must 

have a degree in statistics or computer science to employ. It is already available in Stata (StataCorp, 

2023) as well as in R (Culpepper and Aguinis, 2011; with code later updated at 

www.hermanaguinis.com/eiv.html), including in the “eivtools” package available through CRAN. 

These implementations differ and will produce slightly different results and have different output 

options even though they are based on roughly the same statistical theory. But these 

implementations were not created with mediation analysis in mind and so require the user to 

estimate all the equations for a mediation model with separate commands, and obtaining inferential 

tests for indirect effects requires additional programming that likely goes beyond the skills of many 

researchers. To facilitate adoption of EIV regression in mediation analysis (and linear modeling 

more generally) by easing the programming and computational burden, we instead recommend the 

easy-to-use PROCESS macro for SPSS, SAS, and R (Hayes, 2022) used in our examples and 

simulations. PROCESS is freely-available at www.processmacro.org and already enjoys wide use in 

mediation analysis throughout the behavioral sciences. EIV regression is implemented as of version 

5 and can be used for any mediation model PROCESS can estimate, including simple (single 

mediator), multiple (parallel or serial), blended (combining parallel and serial) and custom 

mediation models programmed as described in Appendix B of Hayes (2022).4 Covariates with 

corresponding reliabilities can also be included in any mediation model. Only a single line of code is 

required rather than lengthier syntax required when using an SEM framework. SPSS users have the 

option of setting up the model with a user-friendly graphical user interface if desired. PROCESS 

takes care of all the computational work, including inference for indirect effects using 

bootstrapping. PROCESS implements the computations described in Appendix A. How to set up 

 
4 The EIV regression routine in PROCESS is not yet available for moderation models or models that 
combine moderation and mediation (conditional process models). 

http://www.hermanaguinis.com/eiv.html
http://www.processmacro.org/
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PROCESS and execute a PROCESS command is documented extensively in Hayes (2022), though the 

documentation there does not include any discussion of the EIV routine as it was implemented after 

the printing of the book. Below we provide a brief discussion of the EIV regression options available 

in PROCESS.  

 For a mediation analysis, PROCESS will expect the user to specify a single (and only one) 

independent variable X following x=, a single outcome or dependent variable Y following y= , and at 

least 1 mediator M following m=. Covariates can be included if desired using the optional cov= 

option. Reliabilities for X and M are entered using the relx= and relm= options. A model number is 

typically also required. Using model=4 in the PROCESS command specifies a simple (single 

mediator) or parallel multiple mediator model, whereas model=6 specifies a serial multiple 

mediator model. Models 80, 81, 82 are models that blend parallel and serial mediation (see the 

documentation).  

In Appendix B, we provide the PROCESS command for the SPSS, SAS, and R versions of the 

example analyses presented earlier using EIV regression. As can be seen there, the PROCESS 

command for the compassionate fatigue study specifies the variables in the data named “compass” 

as X, “efatigue” as M, and “fatigue” as Y, with the estimated reliabilities of compass and efatigue 

being 0.73 and 0.86, respectively. The model=4 option tells PROCESS to set this up as a mediation 

model. The resulting PROCESS output can be found in Appendix C. Notice that PROCESS provides 

model summary information, the regression coefficients, standard errors, t- and p- values, 

confidence intervals, and estimates of the direct, indirect, and total effects of X with corresponding 

inferential information for those effects. 

Consider a modification to this example analysis that includes an additional mediator in the 

model named “rational” in the data and measured with reliability 0.82. In addition, suppose we 

wanted to include three covariates: “age” in years, whether or not a person self-identified as “male” 

(coded 1 in the data, 0 otherwise), and self-esteem (“selfest”) measured with reliability 0.95. 
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Assuming that age and whether a person identifies as male were measured without random 

measurement error (i.e., with reliabilities equal to 1), the PROCESS command below estimates a 

mediation model with “affect” and “rationale” operating as parallel mediators: 

SPSS  

process y=fatigue/x=compass/m=efatigue rational/cov=age male  

  selfest/model=4/relx=0.73/relm=0.86,0.82/relcov=1,1,0.95. 

 

SAS 

process (data=compfat,y=fatigue,x=compass,m=efatigue rational,cov=age  

  male selfest,model=4,relx=0.72,relm=0.86 0.82,relcov=1 1 0.95) 

 

R 

process(data=compfat,y="fatigue",x="compass",m=c("efatigue", 

  "rational"),cov=c("age","male","selfest"),model=4,relx=0.72, 

  relm=c(0.86,0.82),relcov=c(1,1,0.95)) 

 

When more than one mediator or covariate is listed following m= or cov=, reliabilities, if 

any, must be provided for all variables in the same order the variables are listed in the PROCESS 

command. Unknown reliabilities could be set to 1 or the user could provide a reasonable guess for 

the unknown reliability if assuming 1 is not defensible. If the reliability of the measured variables is 

not provided by using the relx, relm, or relcov options (if covariates are included in the model), 

reliability for those variables is treated as 1 by PROCESS. In other words, reliability of 1 is the 

default. When neither relx, relm, nor relcov options are used in the command, PROCESS does an OLS 

regression analysis rather than EIV regression. 

In a mediation analysis, PROCESS defaults to the production of a 95% bootstrap confidence 

interval for the indirect effect(s) using the percentile method based on 5,000 bootstrap samples. 

The number of bootstrap samples can be changed with the boot option (e.g., boot=10000 for 

10,000 bootstrap samples) and the confidence level changed with the conf option (e.g., conf=90 for 

90% confidence intervals). Bootstrap inference for each of the regression coefficients in the model 

is also available rather than for just the indirect effect(s) by using the modelbt option. Output can 

also be saved for use later if desired using the save option, which we relied on to conduct the 
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simulation reported earlier. See the PROCESS documentation in Hayes (2022) for a discussion of 

these options. 

EIV regression relies on a modification of the data based on the reliabilities of the observed 

variables provided by the user. In some circumstances, the resulting modified variance-covariance 

matrix may not be possible to observe in nature. This can occur in small samples and/or when one 

or more of the entered reliabilities is too small. In that case, PROCESS will produce an error saying 

the model could not be estimated as a result of one or more small reliabilities entered. That can also 

occur during the bootstrapping phase. When it does, PROCESS will replace the offending bootstrap 

sample with another. A note at the bottom of the output will tell the user how many times a 

bootstrap sample had to be replaced. Although there is no guidance available for how many such 

replacements is acceptable without affecting the validity of bootstrap inference, common sense 

would suggest fewer replacements would be better. If the user is uncomfortable with the number of 

replacements required to complete the bootstrapping, a Monte Carlo confidence interval could be 

used as an alternative for inference about the indirect effect, as it does not require resampling from 

the data (Preacher & Selig, 2012). PROCESS can conduct a Monte Carlo confidence interval for 

indirect effects using the mc option, as described in the documentation. 

Note that a mediator is not required to use PROCESS’s EIV regression option. It will also 

conduct an ordinary EIV regression analysis. For example, using the same variables and reliabilities 

from the prior hypothetical example, the command below would estimate an EIV regression model 

of fatigue from compass, efatigue, rational, age, male, and selfest: 

SPSS  

process y=fatigue/x=compass efatigue rational age male selfest/ 

  relx=0.72,0.86,0.82,1,1,0.95. 

 

SAS 

process (data=compfat,y=fatigue,x=compass efatigue rational age male  

  selfest,relx=0.72 0.86 0.82 1 1 0.95) 

R 
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process(data=compfat,y="fatigue",x=c("compass","efatigue","rational", 

  "age","male","selfest"),relx=c(0.72,0.86,0.82,1,1,0.95)) 

 

Because analysis of covariance (ANCOVA) is just a special case of multiple regression, it follows that 

the EIV routine in PROCESS can be used to conduct analysis of covariance when the covariate or 

covariates contain random measurement error (see Culpepper and Aguinis, 2011, for a discussion 

of EIV regression in ANCOVA). Using the mcx option described in the documentation, the user can 

specify that there are more than two groups begin compared in the ANCOVA. 

Discussion 

 In this manuscript, we have made the case for EIV regression as a viable approach to 

mediation analysis when the variables in the model contain random measurement error. Our 

example analyses and simulations show that EIV regression produces results comparable to the 

single indicator latent variable approach using SEM while reducing or eliminating the bias in the 

estimation of effects that occurs when using OLS regression and ignoring random measurement 

error. Furthermore, at least in our examples, EIV-based confidence intervals for effects preserved 

their meaning as coverage was generally consistent with confidence. But OLS confidence intervals 

lose their meaning with increasing sample size, as coverage of the true effect decreases (gets worse) 

with more data as a result of the estimation bias. We recommend that researchers properly address 

the random measurement error in their mediation analyses, with EIV-regression being a rather 

painless and easy-to-use approach, even for more complicated models than we have focused on 

here, and certainly better than the standard practice of ignoring it altogether. 

 Although we encourage researchers to use EIV regression when conducting a mediation 

analysis, it could also be used as supplementary method rather than the main analysis reported. For 

example, PROCESS makes it easy to conduct a sensitivity analysis for results generated when 

random measurement error is ignored or different than assumed. Perhaps the investigator prefers 

for one reason or another to use OLS regression but wants to know how vulnerable the conclusions 

are to unaccounted-for measurement error. The investigator could repeat the mediation analysis 
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that ignored measurement error but using known estimates of reliability in an EIV routine such as 

programmed in PROCESS. Consistency in the results, at least substantively, can then be used as a 

defense against criticism that the results reported when unreliability is ignored are just artifacts of 

unaccounted-for measurement error. Another possibility is to follow up an EIV-based mediation 

analysis with alternative reliability estimates that are smaller than the reliabilities used. This would 

assess the vulnerability of the original analysis to random measurement error that is larger than 

assumed. Or if there is no estimate of reliability available for one or more variables in the model, the 

investigator could try different values of reliability to see how much the results are affected by 

different assumptions about the unknown reliability.  

 In the realm of pedagogy, we hope our findings about the viability of EIV regression-based 

mediation analysis and its implementation in PROCESS will encourage statistics and methodology 

instructors to address the shortcomings of unaccounted-for measurement error in data analysis and 

how it can be quite easily addressed in some circumstances. Contrary to the difficulties many 

students experience learning to use an SEM program, we have found that it takes only 10-15 

minutes of classroom time to get students familiar with PROCESS syntax, and its implementation in 

the graphical user interface in SPSS makes it still easier to employ, even in undergraduate 

classrooms. The speed at which PROCESS generates output is an additional advantage of its use in 

the classroom relative to lavaan and Stata. 

But an analysis is only as good as the data it is given. By the standard of reliability, the less 

well a variable in a model is measured, the less well that variable will capture the effect of what the 

researcher claims to be studying. The same can be said for any strategy that attempts to account for 

the effects of random measurement error. EIV regression, like the SILV approach, requires 

information about the reliability of the observed variables in the model. In the example analyses we 

reported here, we treated the reliability estimates reported by the original investigators as truth. 

And in the simulations, we defined that truth. But in practice, investigators don’t know the 
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reliability of their measurements. They can only estimate their reliability, and there are different 

approaches to estimation that can give different estimates. To satisfy its mission of accounting for 

the effects of random measurement error, EIV regression must be given good data to make the 

adjustment, and that means providing the algorithm with reasonably accurate reliability 

information. Had we used different reliability estimates in our examples or used incorrect reliability 

information in our simulation, EIV regression would have gotten things wrong too. As Culpepper 

(2012) and Counsell and Cribbie (2017) note in a different analytical context, the debiasing effects 

of EIV-regression are dependent on providing the routine with accurate estimates of reliability of 

the observed variables. So investigators should take care in generating those estimates.  

Lockwood and McCaffrey (2020) report that EIV standard errors may be too small in some 

circumstances, and Counsel and Cribbie (2017) reported elevated Type I error rates in smaller 

samples for inferences about group differences in a two-group pretest-posttest design. Inaccurate 

standard errors would not affect the validity of inferences for the indirect effect using a percentile 

bootstrap confidence interval, as no standard error is used in the derivation of a bootstrap 

confidence interval calculated using the percentile method. But it could affect the validity of 

inferences in small samples about individual paths, including the total and direct effects. To check 

on this, we calculated the average EIV standard error estimated using expression A4 described in 

Appendix A (the one Lockwood and McCaffrey studied and similar to though not identical to the one 

that Counsel and Cribbie, 2017, reported using), the standard error estimator we used in our 

simulation (expressions A2 and A3 in Appendix A), as well as the average standard deviation of the 

bootstrap EIV estimates of each path (𝑎∗, 𝑏∗, 𝑐′∗) in the model being simulated. As a bootstrap 

estimate of a standard error is based on no analytical derivation or assumptions, it serves as a good 

benchmark for comparing the analytical EIV standard error estimates. As can be seen in Table 6, the 

average analytical standard error using expression A4 was generally smaller than the bootstrap 

standard error in the N=50 condition, but this difference dissipates rapidly as sample size 
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increases. This is consistent with small-sample concerns expressed by Lockwood and McCaffrey 

(2020) and Counsel and Cribbie (2017). But notice that Table 6 that the standard errors generated 

with expressions A2/A3 that we used in our simulations and the default in PROCESS were 

consistently closer to the average bootstrap standard error in smaller samples, though just barely 

larger. This would lead to conservative tests and confidence intervals that are slightly too wide in 

smaller samples, though there is little evidence of this in Table 5.  Nevertheless, in small samples, 

we suggest conducting or at least double-checking inferences for individual paths using either 

bootstrap confidence intervals or a bootstrap estimate of sampling variance. This can be done easily 

in PROCESS using the modelbt option. See the documentation. 

It is not our intention to suggest that EIV regression is statistically better than latent 

variable SEM. On the contrary, we have shown that EIV regression seems to perform as well as the 

SILV approach. SEM offers much more flexibility in model estimation, various accepted means of 

dealing with missing data, measures of model fit, and other advantages beyond the scope of this 

paper. But we do feel that EIV regression is substantially less analytically complex than SEM 

methods and requires (as implemented in PROCESS) less code even for more complex structural 

models that can be intimidating to the average researcher to program in SEM. EIV regression as 

implemented in the PROCESS macro only a few additional keystrokes in the syntax compared to 

doing nothing and can be easily adopted by even novice researchers. Furthermore, the EIV 

estimation implemented in PROCESS is quite fast. PROCESS took no more than 8 seconds for each 

analysis reported in Tables 1-3, including the 5,000 bootstrap samples for inference about the 

indirect effect, whereas the SILV approach in lavaan in R using the code in Appendix B took between 

60 and 90 seconds.5 

 
5 When executed on a Dell Latitude 5310 64bit Intel i5 CPU @ 1.7GHz with 8GB RAM and Windows 
10 operating system. The Mplus code for the SILV approach provided in the supplementary 
materials ran in about 4 seconds. The corresponding Stata code required between 6 and 8 minutes 
to execute.  
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Our enthusiasm for the results we describe here is somewhat tempered by our awareness 

that this manuscript is more of a demonstration by example rather than a more rigorous analysis 

and simulation that varies widely and orthogonally various factors that may influence these results, 

such as the sizes of the effects being estimated, the reliability of the observed variables, sample size, 

and other things. We encourage future research on the performance of EIV-regression relative to 

alternatives to further explore the boundary conditions and generality of our claims and wisdom of 

our recommendations. 

We conclude by warning researchers who might be excited by how easy it now is to account 

for random measurement error in their mediation analyses that EIV regression should not be used 

as a means of sweeping deeper measurement problems under the rug. As Flake and Fried (2020) 

discuss, many researchers are remarkably cavalier in their approach to measurement, often using 

questionable measurement practices that lower the quality and meaning of their data and make 

their results hard to interpret. Poor measurement, construct invalidity, and highly unreliable or 

otherwise low-quality data cannot be made righteous by statistical sleights-of-hand. The EIV 

implementation we have described here is no exception to this general rule. Its use is best reserved 

for situations in which investigators have given careful thought to how they are measuring their 

constructs, are convinced they are measuring what they intend to be measuring and are doing so 

reasonably well but find they need a little extra estimation help given their measurements still 

contain some inevitable random measurement error.  
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Table 1.  

A mediation analysis of the effect of compassion mindset on compassion fatigue through expected fatigue 

from an experimental task using ordinary least squares regression assuming perfect reliability (OLS), a 

single-indicator latent variable model (SILV), and errors-in-variables regression (EIV) as implemented in 

PROCESS. Standard errors in parentheses. Standard errors for the indirect effect are bootstrap estimates.     

n = 308. 

Note: SILV constants are not provided because it estimates a different quantity than OLS or EIV constants 

given the arbitrary scaling of latent variables to have mean of zero. 

 

  

   
Model of Expected Fatigue (M) 

 

  
Model of Compassion Fatigue (Y) 

  OLS EIV SILV 
 

 OLS EIV SILV 

 
Constant 

  
4.266 

(0.210) 
 

 
4.630 

(0.288) 

 
--- 

  
3.004 

(0.302) 

 
2.916 

(0.464) 

 
--- 

Compassion Mindset  
(X) 

 –0.250 
(0.052) 

 

–0.342 
(0.075) 

–0.343 
(0.072) 

  –0.146 
(0.050) 

–0.178 
(0.071) 

–0.178 
(0.072) 

Expected Fatigue (M)  --- --- ---  0.464 
(0.054) 

0.529 
(0.084) 

 

0.529 
(0.066) 

R2  .071 .097   .254 .293  
         
    

OLS 
 

EIV 
 

SILV 
 

 
Total effect of Compassion Mindset  

 
–0.262 
(0.054) 

 

 
–0.359 
(0.078) 

 
–0.359 
(0.075) 

Direct effect of Compassion Mindset –0.146 
(0.050) 

 

–0.178 
(0.071) 

–0.178 
(0.072) 

Indirect effect of Compassion Mindset 
 
[95% percentile bootstrap CI] 

–0.116 
(0.032) 

[–0.185, –0.059] 
 

–0.181 
(0.051) 

[–0.292, –0.093] 

–0.181 
(0.050) 

[–0.292, –0.093] 
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Table 2.  

A mediation analysis of the effect of experimental nature exposure on self-authenticity through positive 

affect using ordinary least squares regression assuming perfect reliability (OLS), a single-indicator latent 

variable model (SILV), and errors-in-variables regression (EIV) as implemented in PROCESS.  Standard 

errors in parentheses. Standard errors for the indirect effect are bootstrap estimates.  n =171 

 

Note: SILV constants are not provided because they estimate a different quantity than OLS or EIV constants 

given the arbitrary scaling of latent variables to have mean of zero. 

 

  

   
Model of Positive Affect (M) 

 

  
Model of Authenticity (Y) 

  OLS EIV SILV 
 

 OLS EIV SILV 

 
Constant 

  
3.433 

(0.063) 
 

 
3.433 

(0.068) 

 
--- 

  
2.823 

(0.392) 

 
2.651 

(0.471) 

 
--- 

Nature Condition (X)  0.320 
(0.089) 

 

0.320 
(0.090) 

0.320 
(0.089) 

  0.143 
(0.133) 

0.127 
(0.139) 

0.127 
(0.133) 

Positive Affect (M)  --- --- ---  0.468 
(0.111) 

0.519 
(0.133) 

 

0.519 
(0.122) 

R2  .070 .070   .121 .131  
         
    

OLS 
 

EIV 
 

SILV 
 

 
Total effect of Nature Condition 

 
0.292 

(0.135) 
 

 
0.292 

(0.136) 

 
0.292 

(0.134) 

Direct effect of Nature Condition 0.143 
(0.133) 

 

0.127 
(0.139) 

0.127 
(0.133) 

Indirect effect of Nature Condition 
 
[95% percentile bootstrap CI] 

0.150 
(0.053) 

[0.058, 0.263] 
 

0.166 
(0.059) 

[0.064, 0.293] 

0.166 
(0.058) 

[0.063, 0.289] 
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Table 3.  

A mediation analysis of the effect of photo-editing behaviours on self-perceived attractiveness through self-

objectifying using ordinary least squares regression assuming perfect reliability (OLS), a single-indicator 

latent variable model (SILV), and errors-in-variables regression (EIV) as implemented in PROCESS.  

Standard errors in parentheses. Standard errors for the indirect effect are bootstrap estimates. n = 671 

 

Note: SILV constants are not provided because they estimate a different quantity than OLS or EIV constants 

given the arbitrary scaling of latent variables to have mean of zero. 

 

 

 

 

   
Model of Self-Objectifying (M) 

 

  
Model of Self-Perceived 

Attractiveness (Y) 
 

  OLS EIV SILV 
 

 OLS EIV SILV 

 
Constant 

  
1.544 

(0.073) 
 

 
1.283 

(0.104) 

 
--- 

  
1.551 

(0.042) 

 
1.453 

(0.061) 

 
--- 

Photo Editing (X)  0.405 
(0.035) 

 

0.540 
(0.051) 

0.540 
(0.048) 

  0.082 
(0.017) 

0.090 
(0.029) 

0.090 
(0.026) 

Self-objectifying (M)  --- --- ---  0.317 
(0.017) 

0.353 
(0.023) 

 

0.353 
(0.022) 

R2  .166 .222   .434 .482  
         
    

OLS 
 

EIV 
 

SILV 
 

 
Total effect of Photo Editing 

 
0.210 

(0.019) 
 

 
0.280 

(0.032) 

 
0.280 

(0.026) 

Direct effect of Photo Editing 0.082 
(0.017) 

 

0.090 
(0.029) 

0.090 
(0.026) 

Indirect effect of Photo Editing 
 
[95% percentile bootstrap CI] 

0.129 
(0.014) 

[0.101, 0.157] 
 

0.191 
(0.022) 

[0.149, 0.234] 

0.191 
(0.021) 

[0.152, 0.232] 
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Table 4.  

Mean Estimated Effect (“Mean”) and Mean Bias Percentage (“Bias%”) in the Simulation (True Effect Being Estimated in Parentheses). 

  
Compassion Fatigue 

 Indirect Effect (–0.116)  Direct Effect (–0.146)  Total Effect (–0.262) 
n OLS  EIV  OLS  EIV  OLS  EIV 
 Mean Bias%   Mean Bias%  Mean Bias%  Mean Bias%  Mean Bias%  Mean Bias% 
50 -.074 -36.6  -.115 -0.8  -.117 -19.8  -.146 0.1  -.191 -27.2  -.261 -0.3 
100 -.075 -35.6  -.117 0.9  -.118 -19.3  -.147 0.5  -.192 -26.5  -.264 0.6 
200 -.073 -36.7  -.115 -1.0  -.118 -19.5  -.147 0.4  -.191 -27.1  -.261 -0.2 
300 -.074 -36.2  -.116 -0.1  -.117 -19.7  -.146 0.1  -.191 -27.0  -.262 0.0 
500 -.074 -35.9  -.116 0.3  -.118 -19.2  -.147 0.8  -.192 -26.6  -.264 0.6 
1000 -.074 -35.9  -.116 0.2  -.118 -19.3  -.147 0.6  -.192 -26.7  -.263 0.4 
    

Nature and Self-Actualization 
  

 Indirect Effect (0.150)  Direct Effect (0.143)  Total Effect (0.293) 
n OLS  EIV  OLS  EIV  OLS  EIV 
 Mean Bias%   Mean Bias%  Mean Bias%  Mean Bias%  Mean Bias%  Mean Bias% 
50 .135 -10.1  .150 0.2  .153 6.7  .137 -4.1  .287 -1.9  .287 -1.9 
100 .137 -8.5  .152 1.5  .157 10.0  .142 -0.6  .294 .5  .294 0.5 
200 .135 -10.1  .149 -0.4  .158 10.3  .143 0.1  .292 -.1  .292 -0.1 
300 .135 -9.6  .150 0.1  .160 12.1  .146 1.9  .296 1.0  .296 1.0 
500 .135 -10.2  .149 -0.6  .159 10.9  .144 0.8  .293 .1  .293 0.1 
1000 .136 -9.5  .150 0.2  .157 9.9  .143 -0.3  .293 .0  .293 0.0 
    

Photo Editing 
  

 Indirect Effect (0.128)  Direct Effect (0.082)  Total Effect (0.210) 
n OLS  EIV  OLS  EIV  OLS  EIV 
 Mean Bias%   Mean Bias%  Mean Bias%  Mean Bias%  Mean Bias%  Mean Bias% 
50 .087 -32.2  .129 0.5  .070 -14.4  .081 -1.7  .157 -25.2  .210 -0.3 
100 .087 -32.2  .129 0.3  .070 -14.3  .081 -1.3  .157 -25.2  .210 -0.3 
200 .087 -32.6  .128 -0.4  .071 -13.2  .083 0.6  .158 -25.0  .210 0.0 
300 .087 -32.3  .128 0.0  .071 -13.4  .082 0.1  .158 -25.0  .211 0.0 
500 .087 -32.1  .129 0.4  .071 -14.0  .081 -0.7  .158 -25.0  .210 0.0 
1000 .087 -32.5  .128 -0.2  .071 -13.8  .082 -0.4  .157 -25.2  .210 -0.3 
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Table 5 

Percentage of OLS and EIV (from expressions A2 and A3) 95% Confidence Intervals in the Simulation 

Containing the True Value of the Effect Being Estimated.  

 

  
Compassion Fatigue 

 

n Indirect Effect  Direct Effect  Total Effect 
 

OLS EIV  OLS EIV  OLS EIV 

50 84.3 94.3  93.8 94.6  91.4 94.0 
100 79.7 94.7  93.7 94.9  88.1 94.4 
200 66.9 94.5  92.0 94.5  80.0 94.8 
300 55.6 95.2  90.8 95.1  72.4 95.0 
500 38.0 94.7  89.2 95.0  58.5 95.0 
1000 11.7 94.7  82.0 94.7  31.0 95.4 
         
 Nature and Self-Actualization 

 

n Indirect Effect  Direct Effect  Total Effect 
 

OLS EIV  OLS EIV  OLS EIV 

50 92.1 93.5  95.5 96.2  95.0 95.6 
100 93.7 94.8  95.3 95.7  94.8 94.9 
200 92.6 94.7  95.3 95.5  94.9 95.0 
300 92.6 94.7  94.5 94.4  94.5 94.6 
500 91.9 95.1  94.3 94.7  94.7 94.8 
1000 89.4 95.5  94.6 95.8  95.8 95.8 
         
 Photo Editing 

 

n Indirect Effect  Direct Effect  Total Effect 
 

OLS EIV  OLS EIV  OLS EIV 

50 79.7 94.4  94.7 95.2  87.1 94.4 
100 69.8 94.8  94.5 95.4  79.8 95.3 
200 48.1 94.6  93.6 95.1  62.8 94.9 
300 32.1 94.6  92.3 95.4  50.1 95.3 
500 13.5 94.9  90.5 94.9  27.7 94.8 
1000 00.9 95.4  85.5 94.8  04.8 94.8 
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Table 6 

Mean (over 5,000 simulation repetitions) Analytical (from Appendix A, expressions A2 and A3; or A4) and 

Bootstrap Estimates of EIV Standard Errors of the Paths in the Simulation. Table Entries Under “Boot” are 

the Average Standard Deviation of the 5,000 Bootstrap Estimates of the Path. 

 

      
Compassion Fatigue 
 

    
 

n 
 𝑎∗    𝑏∗    𝑐′∗  

 
A2/A3 A4 Boot  A2/A3 A4 Boot  A2/A3 A4 Boot 

50 .173 .160 .168  .182 .165 .177  .185 .167 .182 
100 .118 .114 .117  .123 .117 .119  .125 .119 .125 
200 .083 .081 .081  .085 .083 .085  .086 .084 .087 
300 .067 .067 .068  .069 .068 .068  .070 .069 .069 
500 .052 .052 .052  .053 .052 .052  .054 .053 .053 
1000 .037 .037 .037  .037 .037 .037  .038 .038 .038 

     
Nature and Self-Actualization 

   

            
n 

 𝑎∗    𝑏∗    𝑐′∗  
 

A2/A3 A4 Boot  A2/A3 A4 Boot  A2/A3 A4 Boot 
50 

.176 .169 .174  .256 .232 .253  .287 .269 .281 
100 .124 .121 .122  .175 .166 .173  .199 .193 .196 
200 .087 .086 .088  .122 .119 .120  .139 .137 .137 
300 .071 .071 .071  .099 .097 .099  .113 .112 .114 
500 .055 .055 .054  .076 .075 .076  .088 .087 .088 
1000 .039 .039 .038  .054 .053 .054  .062 .062 .061 

      
Photo Editing 

    

            
n 

 𝑎∗    𝑏∗    𝑐′∗  
 

A2/A3 A4 Boot  A2/A3 A4 Boot  A2/A3 A4 Boot 

50 .171 .158 .167  .084 .076 .082  .091 .082 .088 
100 .118 .113 .115  .057 .054 .056  .061 .058 .059 
200 .082 .080 .081  .039 .038 .039  .042 .041 .041 
300 .067 .066 .066  .032 .031 .032  .034 .034 .034 
500 .052 .051 .051  .024 .024 .025  .026 .026 .026 
1000 .036 .036 .036  .017 .017 .017  .019 .018 .019 
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Figure 1. A mediation model researchers typically want to estimate (panel A) versus what they typically 
estimate (panel B). See equations 1 through 4. Dashed arrows reflect the measurement assumption that 
true scores (* superscripts) affect observed scores (O superscripts). 
 

 



EIV Regression 
47 

 
 

 

 

 
 

 

 
Figure 2. A single indicator latent variable (SILV) mediation model with one mediator in the notation used 
throughout this paper. Variables with * superscripts are latent variables. Variables with O superscripts are 
observed variables. V = variance. 
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Appendix A 

Errors-in-Variables Regression Computations 

The errors-in-variables regression analysis algorithms we use in our examples, the simulation, and 

that are implemented in PROCESS were motivated by computations done by Stata as of version 15 and 

described in StataCorp (2023, pp. 594-600), which we report below for convenience and using similar 

notation. 

Let 𝐗 be an 𝑛 × (𝑘 + 1) matrix containing the observed data from n observations for k variables on 

the right-hand side of a regression model, with the last column containing all ones for the regression 

constant. Let 𝐲 be an n × 1 vector of observed measurements of Y, the variable on the left side of the 

regression equation. And let 𝐄 be a (k + 1) diagonal matrix with the jth diagonal element set to 

𝑛[1 − 𝜌(𝑥𝑗)]𝑉(𝑥𝑗) where 𝜌(𝑥𝑗) and 𝑉(𝑥𝑗) are the reliability and variance, respectively, of the observed data 

in the jth column of X.  And, let 𝐃 = 𝐗′𝐗 − 𝐄. The elements of 𝐛 = 𝐃−𝟏𝐗′𝐲 are the EIV estimates of the 

regression coefficients for the k variables in 𝐗 in the model of Y, with the last entry being the regression 

constant. The mean squared error for the EIV model is 𝑠2 = (𝐲′𝐲 − 𝐛′𝐃−𝟏𝐛)/(𝑛 − 𝑘 − 1) and the squared 

multiple correlation is 1 − [(𝑛 − 𝑘 − 1)𝑠2/𝑆𝑆𝑡𝑜𝑡𝑎𝑙)]  where 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 is the total sum of squares calculated in 

the usual way in regression analysis. 

 The variance-covariance matrix of 𝐛 is needed for inference about regression coefficients. Define  

𝑒𝑖𝑥𝑖𝑗 + (𝑥𝑖𝑗 − 𝑥̅𝑗)2[1 − 𝜌(𝑥𝑗)]𝑏𝑗 (A1) 

as the element in the ith row and jth column of an 𝑛 × (𝑘 + 1)  matrix H where i is the observation in the ith 

row in 𝐗, j is the variable in the jth column of 𝐗, and 𝑒𝑖 = 𝑦𝑖 − 𝑥𝑖𝐛. The variance-covariance matrix of 𝐛 is 

estimated as 

𝐃−𝟏𝐇′𝐇𝐃−𝟏  (A2) 

(Stefanski & Boos, 2002, Buonaccorsi, 2010, Fuller, 1987, as cited in StataCorp, 2023) and the square root of 

the diagonal elements in this resulting (𝑘 + 1) × (𝑘 + 1)  matrix are the standard errors of the regression 

coefficients in 𝐛. Note that the standard errors estimated in this manner do not converge to the OLS 

standard errors as the reliability of observed data in columns of 𝐗 converge to 1. This is because this 
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approach to EIV standard error estimation includes a robustification component to offset the effects of 

heteroscedasticity of unknown form. When reliabilities are all set to 1, expression A1 generates 

heteroscedasticity-consistent standard errors equivalent to HC0 described in Long and Ervin (2000) and 

Hayes and Cai (2007). Regardless of the setting for reliabilities in the EIV routine, this method, when 

requested using option eiv=0 in the PROCESS command, will produce standard errors equivalent to those 

generated by Stata as of version 15. 

 But the HC0 correction for heteroscedasticity can produce standard errors that are too small in 

smaller samples (see Long & Ervin, 2000), resulting in elevated Type I errors and lower confidence interval 

coverage than the nominal level. Our (unpublished) simulation results examining the performance of 

expressions A1 and A2 are consistent with this.  PROCESS can implement a different EIV variance-

covariance matrix estimator for b with an alternative heteroscedasticity correction that yields standard 

errors equivalent to HC3 (MacKinnon and White, 1985) when all reliabilities are set to 1. Research shows in 

the perfect reliability case that the HC3 estimator performs better in smaller samples than does HC0 (Long 

& Ervin, 2000). Defining ℎ𝑖 as case i’s leverage, which is the ith diagonal element of 𝐗(𝐗′𝐗)−𝟏𝐗 , the ith row 

and jth column of H are set to  

(𝑒𝑖𝑥𝑖𝑗)/(1 − ℎ𝑖) + (𝑥𝑖𝑗 − 𝑥̅𝑗)2[1 − 𝜌(𝑥𝑗)]𝑏𝑗 (A3) 

Expression A2 then generates the variance-covariance matrix of b, the diagonals of which are the squared 

standard errors for the regression coefficients and constant. This is the default variance-covariance 

estimator of b used by PROCESS’s EIV regression routine (or is specified using eiv=3 in the PROCESS 

command) and this is the standard error estimator that was used in the example analyses and simulations 

we report in this manuscript. This approach is not available in Stata or any other software other than 

PROCESS as of the writing of this manuscript. 

PROCESS can also compute a third and somewhat simpler approach to constructing the variance-

covariance matrix of 𝐛, implemented in Stata prior to version 15 and described in Lockwood and McCaffrey 

(2000).  By including eiv=5 in the PROCESS command, the standard errors for the EIV regression 

coefficients are calculated as the square root of the diagonal elements of 



EIV Regression 
50 

 
𝑠2𝐃−𝟏𝐗′𝐗𝐃−𝟏. (A4) 

This approach to estimating the standard error of the regression coefficients will be identical to the 

OLS standard errors when the reliabilities of all the variables on the right-hand side of the equation are 

equal to 1.  However, Lockwood and McCaffrey (2000) show analytically as well as through simulation that 

this approach can produce standard errors that are too small in some circumstances. This approach to 

estimating the variance-covariance matrix of b was not used in our simulations or example computations, 

and it does not account for heteroscedasticity of unknown form as the other methods implemented in 

PROCESS do. 
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Appendix B 

Code for the Three Example Mediation Analyses 

 

This appendix provides the code to conduct the analyses reported in Tables 1-3. The data are available at 

https://osf.io/x8we5/.  

Compassion Fatigue and Compassion Mindset 

Observed Variable OLS Regression Using PROCESS. 

SPSS: process y=fatigue/x=compass/m=efatigue/model=4/total=1/seed=24080. 

SAS: %process(data=compfat,y=fatigue,x=compass,m=efatigue,model=4,total=1, 
   seed=24080) 

 

R: process(data=compfat,y="fatigue",x="compass",m="efatigue",model=4,total=1, 
   seed=24080) 

 

Errors-in-Variables Regression Using PROCESS (requires PROCESS version 5 or later) 

SPSS: process y=fatigue/x=compass/m=efatigue/model=4/total=1/seed=24080 
   /relx=0.73/relm=0.86. 

 

SAS: %process(data=compfat,y=fatigue,x=compass,m=efatigue,model=4,total=1, 
   seed=24080,relx=0.73,relm=0.86) 

 

R: process(data=compfat,y="fatigue",x="compass",m="efatigue",model=4,total=1, 
   seed=24080,relx=0.73,relm=0.86) 

 

Single-Indicator Latent Variable Structural Equation Model in R using lavaan 

compfat<-read.table("compfat.csv", sep=",",header=TRUE) 

library(lavaan) 

model.silv<-"Lfatigue=~fatigue 

             Lcompass=~compass 

             Lefatigue=~efatigue 

             Lefatigue~a*Lcompass 

             Lfatigue~b*Lefatigue+cp*Lcompass 

             ab := a*b 

              c :=a*b+cp 

             #(1-reliability) multiplied by observed variances 

             compass~~((1-0.73)*0.912239)*compass 

             fatigue~~((1-0.84)*0.879927)*fatigue 

             efatigue~~((1-0.86)*0.804416)*efatigue" 

modelp<-sem(model.silv,data=compfat) 

summary(modelp,fit.measures=TRUE) 

https://osf.io/x8we5/
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set.seed(24080) 

modelp<-sem(model.silv,data=compfat,se="bootstrap",bootstrap=5000) 

parameterestimates(modelp,boot.ci.type="perc") 

 

Nature and Self-Actualization 

Observed Variable OLS Regression Using PROCESS. 

SPSS: process y=authcity/x=natcond/m=paffect/model=4/total=1/seed=27654. 

SAS: %process (data=nature,y=authcity,x=natcond,m=paffect,model=4,total=1, 
   seed=27654) 

  

R: process(nature,y="authcity",x="natcond",m="paffect",model=4,total=1, 
   seed=27654) 

 

Errors-in-Variables Regression using PROCESS (requires PROCESS version 5 or later) 

SPSS: process y=authcity/x=natcond/m=paffect/model=4/total=1/seed=27654 
   /relm=0.91. 

 

SAS: %process (data=nature,y=authcity,x=natcond,m=paffect,model=4,total=1, 
  seed=27654,relm=0.91) 

  

R: process(nature,y="authcity",x="natcond",m="paffect",model=4,total=1, 
  seed=27654,relm=0.91) 

 

Single-Indicator Latent Variable Structural Equation Model in R using lavaan 

nature<-read.table("nature.csv", sep=",",header=TRUE) 

library(lavaan) 

model.silv<-"Lauthcity=~authcity 

             Lpaffect=~paffect 

             Lpaffect~a*natcond 

             Lauthcity~b*Lpaffect+cp*natcond 

             ab :=a*b 

             c := a*b+cp 

             #(1-reliability) multiplied by observed variances 

             authcity~~((1-0.82)*0.7950942)*authcity 

             paffect~~((1-0.91)*0.3656030)*paffect" 

modelp<-sem(model.silv,data=nature) 

summary(modelp,fit.measures=TRUE) 

set.seed(27654) 

modelp<-sem(model.silv,data=nature,se="bootstrap",bootstrap=5000) 

parameterestimates(modelp,boot.ci.type="perc") 

 
 

Photo Editing and Self-Perceived Attractiveness 

Observed Variable OLS Regression Using PROCESS. 

SPSS: process y=spa/x=pes/m=sobbs/model=4/total=1/seed=7234. 
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SAS: %process (data=photo,y=spa,x=pes,m=sobbs,model=4,total=1,seed=7234) 

R: process(photo,y="spa",x="pes",m="sobbs",model=4,total=1,seed=7234) 

Errors-in-Variables Regression using PROCESS (requires PROCESS version 5 or later) 

SPSS: process y=spa/x=pes/m=sobbs/model=4/total=1/seed=7234/relx=0.75 
   /relm=0.89. 

 

SAS: %process (data=photo,y=spa,x=pes,m=sobbs,model=4,total=1,seed=7234, 
   relx=0.75,relm=0.89) 

  

R: process(photo,y="spa",x="pes",m="sobbs",model=4,total=1,seed=7234, 
   relx=0.75,relm=0.89) 

 

Single-Indicator Latent Variable Structural Equation Model in R using lavaan 

photo<-read.table("photo.csv", sep=",",header=TRUE) 

library(lavaan) 

model.silv<-"Lspa=~spa 

             Lpes=~pes 

             Lsobbs=~sobbs 

             Lsobbs~a*Lpes 

             Lspa~b*Lsobbs+cp*Lpes 

             ab :=a*b 

             c := a*b+cp 

             #(1-reliability) multiplied by observed variances 

             spa~~((1-0.94)*0.1602310)*spa 

             pes~~((1-0.75)*0.5474906)*pes 

             sobbs~~((1-0.89)*0.5406272)*sobbs" 

modelp<-sem(model.silv,data=nature) 

summary(modelp,fit.measures=TRUE) 

set.seed(7234) 

modelp<-sem(model.silv,data=photo,se="bootstrap",bootstrap=5000) 

parameterestimates(modelp,boot.ci.type="perc")  

 
  



EIV Regression 
54 

 
 

Appendix  C 

PROCESS Output from a Mediation Analysis using EIV Regression 

The PROCESS output below was generated with the PROCESS command provided in Appendix B. 

 

Run MATRIX procedure: 

 

***************** PROCESS Procedure for SPSS Version 5.0 ***************** 

 

          Written by Andrew F. Hayes, Ph.D.       www.afhayes.com 

    Documentation available in Hayes (2022). www.guilford.com/p/hayes3 

 

************************************************************************** 

  Model: 4 

      Y: fatigue 

      X: compass 

      M: efatigue 

 

Sample 

Size:  308 

 

Custom 

Seed:     24080 

 

************************************************************************** 

                     Errors-in-variables regression 

 

OUTCOME VARIABLE: 

 efatigue 

 

Model Summary 

       R-sq        MSE     F(HC3)        df1        df2          p 

      .0969      .7289    20.9460     1.0000   306.0000      .0000 

 

Model 

              coeff    se(HC3)          t          p       LLCI       ULCI 

constant     4.6305      .2875    16.1057      .0000     4.0647     5.1962 

compass      -.3421      .0747    -4.5767      .0000     -.4891     -.1950 

 

************************************************************************** 

                     Errors-in-variables regression 

 

OUTCOME VARIABLE: 

 fatigue 

 

Model Summary 

       R-sq        MSE     F(HC3)        df1        df2          p 

      .2926      .6265    31.0888     2.0000   305.0000      .0000 

 

Model 

              coeff    se(HC3)          t          p       LLCI       ULCI 

constant     2.9162      .4640     6.2850      .0000     2.0031     3.8292 

compass      -.1779      .0711    -2.5012      .0129     -.3178     -.0379 

efatigue      .5290      .0838     6.3144      .0000      .3641      .6938 
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************************** TOTAL EFFECT MODEL **************************** 

                     Errors-in-variables regression 

 

OUTCOME VARIABLE: 

 fatigue 

 

Model Summary 

       R-sq        MSE     F(HC3)        df1        df2          p 

      .0974      .7968    21.3301     1.0000   306.0000      .0000 

 

Model 

              coeff    se(HC3)          t          p       LLCI       ULCI 

constant     5.3655      .3035    17.6803      .0000     4.7683     5.9627 

compass      -.3588      .0777    -4.6185      .0000     -.5117     -.2059 

 

 

************** TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y ************** 

 

Total effect of X on Y 

     Effect    se(HC3)          t          p       LLCI       ULCI 

     -.3588      .0777    -4.6185      .0000     -.5117     -.2059 

 

Direct effect of X on Y 

     Effect    se(HC3)          t          p       LLCI       ULCI 

     -.1779      .0711    -2.5012      .0129     -.3178     -.0379 

 

Indirect effect(s) of X on Y: 

             Effect     BootSE   BootLLCI   BootULCI 

efatigue     -.1809      .0514     -.2922     -.0926 

 

*********************** ANALYSIS NOTES AND ERRORS ************************ 

 

Level of confidence for all confidence intervals in output: 

  95.0000 

 

Number of bootstrap samples for percentile bootstrap confidence intervals: 

  5000 

 

NOTE: A heteroskedasticity-consistent standard error and covariance matrix estimator 

was used. 

 

NOTE: This errors-in-variables analysis assumes the following reliabilities: 

  compass efatigue 

    .7300    .8600 

   
   

 


