Algorithm for bootstrapping a distribution of α

Klaus Krippendorff
kkrippendorff@asc.upenn.edu
2006.08.16
Revised 2011.6.12

In the absence of a theoretically motivated distribution for α, and especially because reliability data may be small and have various metrics (levels of measurement), the distribution of α is obtained by bootstrapping. It provides probabilities of the α-values that can be expected when very many similar samples of reliability data were coded. This bootstrapping algorithm randomly draws a great number of samples from the cell contents of a matrix of observed coincidences, obtains a hypothetical disagreement D_o for each, which together with the original expected disagreement D_e, gives rise to a probability distribution, p_α of likely α-values.

Given:

- The square matrix of observed coincidences o_{ck}, which gave rise to the α as calculated, including the total number n_\cdot of values contributing to pair comparisons $n_\cdot = \sum_{c=1}^{v} \sum_{k=1}^{r} o_{ck}$
- The expected disagreement D_e in the denominator of the observed $\alpha = 1 - \frac{D_o}{D_e}$
- The applicable metric difference δ_{ck}^2
- The number X of resamples to be drawn – chosen by the analyst.

The bootstrapping algorithm is defined in four steps:

First. Define the function $\delta_{ck}^2 = f(R)$ where R is a uniformly distributed random number between 0 and 1 within a continuum of adequate precision. That continuum is segmented by the probabilities $p_{ck} = \frac{o_{ck}}{n_\cdot}; \sum_{c=1}^{v} \sum_{k=1}^{r} p_{ck} = 1$ so that each segment p_{ck} of R is associated with its corresponding δ_{ck}^2:

$$R = 0 \quad \delta_{11}^2 \quad \sum_{g<h} \sum_{c=1}^{v} p_{gh} \quad p_{ck} \quad \sum_{g>h} \sum_{k=1}^{r} p_{gh} \quad 1 = R$$
Second. Determine the number \(M \) of random draws with replacement from the data, capped by a practical limit.

Let \(Q = \) the number of non-zero \(c \cdot k \) coincidences, \(o_{ck} > 0 \),

\[
M = \min[25 \cdot Q, (m-1)n../2]
\]

Third. Bootstrap the distribution of \(\alpha \)

Set the array \(n_\alpha = 0 \); where \(-1 \leq \alpha \leq +1\), and \(\alpha \) has at least 4 significant digits.

Do \(X \) times \(X \) is chosen by the analyst, by default \(X = 20,000 \)

\[
\text{Do } M \text{ times}
\]

\[
\begin{cases}
\text{Pick a random number } R \text{ between 0 and 1 (uniform distribution)} \\
\text{Determine } \delta^2_{ck} \text{ by means of the function } f(R) \\
\text{SUM } \leftarrow \text{SUM } + \delta^2_{ck} \\
\alpha = 1 - \frac{\text{SUM}}{M \cdot D_e} \\
\text{If } \alpha < -1.000, n_{\alpha-1} \leftarrow n_{\alpha-1} + 1 \\
\text{Otherwise: } n_\alpha \leftarrow n_\alpha + 1
\end{cases}
\]

Forth. Correct the frequencies \(n_\alpha \) for situations in which the lack of variation should cause \(\alpha \) to be indeterminate (\(\alpha = 1 - 0/0 \)):

\[
n_x = 0 \\
\text{If the matrix of coincidences contains exactly one non-zero diagonal cell: } o_{cc} > 0: \\
n_x = n_{\alpha=1} \quad \text{and} \quad n_{\alpha=1} = 0 \\
\text{If the matrix of coincidences contains two or more non-zero diagonal cells: } o_{cc} > 0: \\
n_x = X \sum_{c=1}^{c=1} \left(\frac{o_{cc}}{n_{cc}} \right)^M \quad \text{and} \quad n_{\alpha=1} \leftarrow n_{\alpha=1} - n_x
\]

The resulting distribution of \(\alpha \) is expressed in terms of the probabilities \(p_\alpha = \frac{n_\alpha}{X - n_x} \).

This distribution offers two important statistical properties of \(\alpha \):

- The confidence interval for \(\alpha \) at a chosen level \(p \) of statistical significance (two-tailed):
 \[
 \begin{align*}
 \alpha_{\text{smallest}} &= \text{the smallest } \alpha \mid \sum_\alpha \frac{n_\alpha}{X - n_x} \geq \frac{p}{2} \\
 \alpha_{\text{largest}} &= \text{the largest } \alpha \mid \sum_\alpha \frac{n_\alpha}{X - n_x} \leq \left(1 - \frac{p}{2}\right) \\
 \alpha_{\text{smallest}} \leq \alpha \leq \alpha_{\text{largest}}
 \end{align*}
 \]

- The probability \(q \) that the reliability data fail to reach the smallest acceptable \(\alpha_{\text{min}} \):
 \[
 q = \sum_{\alpha < \alpha_{\text{min}}} \frac{n_\alpha}{X - n_x}
 \]